Abstract

pH gradient reversal refers to intracellular alkalization and extracellular acidification commonly seen in malignant tumors. To meet their high anabolic demand, cancer cells rewire their glucose metabolism from oxidative phosphorylation to lactate fermentation, which results in the excessive generation of protons. To avoid lethal cytosolic acidification, lactate-fermenting cancer cells activate multiple acid removal pathways leading to the acidification of the extracellular space. This acidification is often further intensified by the defective capacity of the disorganized tumor vasculature to dilute protons away from the cancer tissue. The cancer-specific proton equilibrium with highly alkaline cytosol and acidic extracellular space is emerging as a fundamental driving force for cancer growth. Here, we discuss how cancer cells establish and maintain reversed pH gradient, how pH gradient reversal fuels cancer progression, and how these mechanisms can be targeted in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.