Abstract

In view of the lack of a specific drug-sustained release system that is responsive to chronic wounds of the type II diabetic foot, and the demands for frequent movement at the foot wound, pH/glucose dual-responsive metformin-released adhesion-enhanced self-healing easy-removable antibacterial antioxidant conductive hemostasis multifunctional phenylboronic acid and benzaldehyde bifunctional polyethylene glycol-co-poly(glycerol sebacic acid)/dihydrocaffeic acid and l-arginine cografted chitosan (PEGS-PBA-BA/CS-DA-LAG, denoted as PC) hydrogel dressings were constructed based on the double dynamic bond of the Schiff-base and phenylboronate ester. It was further demonstrated that the PC hydrogel promotes wound healing by reducing inflammation and enhancing angiogenesis in a rat type II diabetic foot model. In addition, the addition of metformin (Met) and graphene oxide (GO), as well as their synergy, were confirmed to better promote wound repair in vivo. In summary, adhesion-enhanced self-healing multifunctional PC/GO/Met hydrogels with stimuli-responsive metformin release ability and easy removability have shown a promoting effect on the healing of chronic athletic diabetic wounds and provide a local-specific drug dual-response release strategy for the treatment of type II diabetic feet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.