Abstract
The effect of pH on the interfacial tension of a sphingomyelin membrane in aqueous solution has been studied. Three models describing H(+) and OH(-) ion adsorption on the bilayer lipid surface are presented. In models I and II, the membrane surface is continuous, with uniformly distributed functional groups as centers of H(+) and OH(-) ion adsorption. In model III, the membrane surface is composed of lipid molecules, with and without adsorbed H(+) and OH(-) ions. The contribution of each individual lipid molecule to the overall interfacial tension of the bilayer was assumed to be additive in models I and II. In model III, the Gibbs isotherm was used to describe adsorption of H(+) and OH(-) ions at the bilayer surface. Theoretical equations are derived to describe the interfacial tension as a function of pH for all three models. Maximum interfacial tension was observed experimentally at the isoelectric point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.