Abstract

The poly(acrylic acid)-graft-poly(vinylidene fluoride) (PAAc-g-PVDF) and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) (P4VP-g-PVDF) copolymers were obtained by thermally induced molecular graft copolymerization of acrylic acid (AAc) and 4-vinylpyridine (4VP), respectively, with the ozone-pretreated poly(vinylidene fluoride) (PVDF) in N-methyl-2-pyrrolidone (NMP) solution. Microfiltration (MF) membranes were prepared from the respective copolymers by phase inversion in aqueous media. The effects of pH of the coagulation bath on the physicochemical and morphological characteristics of the membranes were investigated. The surface compositions of the membranes were determined by X-ray photoelectron spectroscopy (XPS). The surface graft concentration of the AAc polymer for the PAAc-g-PVDF MF membrane increased with decreasing pH value of the coagulation bath. Completely opposite pH-dependent behavior was observed for the surface graft concentration of the 4VP polymer in the P4VP-g-PVDF MF membranes. A substantial increase in mean pore size was observed for the PAAc-g-PVDF MF membranes cast in basic coagulation baths of increasing pH. In the case of the P4VP-g-PVDF MF membranes, a substantial increase in mean pore size was observed for membranes cast in low pH (acidic) baths. The permeation rate of aqueous solutions through the PAAc-g-PVDF and P4VP-g-PVDF MF membranes exhibited a reversible dependence on the pH of the solution, with the membranes cast near the neutral pH exhibiting the highest sensitivity to changes in permeate pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call