Abstract

Abstract. The mechanisms of molecular halogen production from frozen saline surfaces remain incompletely understood, limiting our ability to predict atmospheric oxidation and composition in polar regions. In this laboratory study, condensed-phase hydroxyl radicals (OH) were photochemically generated in frozen saltwater solutions that mimicked the ionic composition of ocean water. These hydroxyl radicals were found to oxidize Cl−, Br−, and I−, leading to the release of Cl2, Br2, I2, and IBr. At moderately acidic pH (buffered between 4.5 and 4.8), irradiation of ice containing OH precursors (either of hydrogen peroxide or nitrite ion) produced elevated amounts of I2. Subsequent addition of O3 produced additional I2, as well as small amounts of Br2. At lower pH (1.7–2.2) and in the presence of an OH precursor, rapid dark conversion of I− to I2 occurred from reactions with hydrogen peroxide or nitrite, followed by substantial photochemical production of Br2 upon irradiation. Exposure to O3 under these low pH conditions also increased production of Br2 and I2; this likely results from direct O3 reactions with halides, as well as the production of gas-phase HOBr and HOI that subsequently diffuse to frozen solution to react with Br− and I−. Photochemical production of Cl2 was only observed when the irradiated sample was composed of high-purity NaCl and hydrogen peroxide (acting as the OH precursor) at pH = 1.8. Though condensed-phase OH was shown to produce Cl2 in this study, kinetics calculations suggest that heterogeneous recycling chemistry may be equally or more important for Cl2 production in the Arctic atmosphere. The condensed-phase OH-mediated halogen production mechanisms demonstrated here are consistent with those proposed from recent Arctic field observations of molecular halogen production from snowpacks. These reactions, even if slow, may be important for providing seed halogens to the Arctic atmosphere. Our results suggest the observed molecular halogen products are dependent on the relative concentrations of halides at the ice surface, as we only observe what diffuses to the air–surface interface.

Highlights

  • It is well established that gas-phase halogen species influence atmospheric composition through reactions with ozone (O3), volatile organic compounds (VOCs), and gaseous elemental mercury (Hg0) (Barrie and Platt, 1997; Carpenter et al, 2013; Platt and Hönninger, 2003; SaizLopez and von Glasow, 2012; Simpson et al, 2007, 2015; Steffen et al, 2008, 2014, and references therein)

  • It was shown in this ice-coated-wall flow tube laboratory study that the hydroxyl radical can act as an effective condensed-phase halide oxidant, leading to I2, IBr, Br2, and Cl2 production under acidic conditions

  • Rates of molecular halogen production and release were dictated by both pH and relative halide concentrations

Read more

Summary

Introduction

It is well established that gas-phase halogen species influence atmospheric composition through reactions with ozone (O3), volatile organic compounds (VOCs), and gaseous elemental mercury (Hg0) (Barrie and Platt, 1997; Carpenter et al, 2013; Platt and Hönninger, 2003; SaizLopez and von Glasow, 2012; Simpson et al, 2007, 2015; Steffen et al, 2008, 2014, and references therein). It is believed that halogens build up to effective concentrations through a heterogeneous reaction sequence known as the “halogen explosion” (Reactions R1–R4, where X represents Cl, Br, or I) (Garland and Curtis, 1981; Tang and McConnell, 1996; Vogt et al, 1996; Wennberg, 1999). Halfacre et al.: pH-dependent production of molecular halogens from frozen surfaces

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.