Abstract

A poly(phenylene ethynylene) conjugated polymer (PPE-NMe(3)(+)-COO(-)) containing tetraalkylammonium groups and carboxylate groups has been synthesized by Sonogashira coupling. Due to the presence of the strong cationic and weak anionic pendant units, the polymer undergoes a pH-induced transition from cationic polyelectrolyte to polyampholyte due to deprotonation of the carboxylic acid units in basic solution. Studies of the pH dependence of the polymers' optical properties reveal changes in absorption oscillator strength and fluorescence quantum efficiency that are triggered by the transition from cationic polyelectrolyte to polyampholyte nature. Stern-Volmer fluorescence quenching of PPE-NMe(3)(+)-COO(-) with a negatively charged quencher 1,4,5,8-naphthalenediimide-N,N-bis(methylsulfonate) (NDS) shows that the polymer fluorescence quenching is amplified at low pH where the polymer is a polycation, whereas the quenching efficiency is considerably less at high pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.