Abstract

The pre-melanosomal protein (Pmel17) aggregates within melanosomes to form functional amyloid fibrils that facilitate melanin polymerization. The repeat domain (RPT) of Pmel17 fibrillates under strict acidic melanosomal pH. Alternative splicing results in a shortened repeat domain (sRPT), which also forms amyloid fibrils. Here, we explored the effects of pH and protein concentration on sRPT aggregation by monitoring the intrinsic fluorescence of the sole tryptophan at position 381 (381W). 381W emission properties revealed changes of local environment polarity for sRPT fibrils formed at different pH. At pH 4, fibrils formed rapidly with no lag phase. A high 381W intensity was observed with a slight blue shift (10 nm). These fibrils underwent further structural rearrangements at intermediate pH (5–6), mirroring that of melanosome maturation, which initiates at pH 4 and increases to near neutral pH. In contrast, typical sigmoidal kinetics were observed at pH 6 with slower rates and 381W exhibited quenched emission. Interestingly, biphasic kinetics were observed at pH 5 in a protein concentration-dependent manner. A large 381W blue shift (23 nm) was measured, indicating a more hydrophobic environment for fibrils made at pH 5. Consistent with 381W fluorescence, Raman spectroscopy revealed molecular level perturbations in sRPT fibrils that were not evident from circular dichroism, transmission electron microscopy, or limited proteolysis analysis. Finally, sRPT fibrils did not form at pH ≥7 and preformed fibrils rapidly disaggregated under these solution conditions. Collectively, this work yields mechanistic insights into pH-dependent sRPT aggregation in the context of melanosome maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.