Abstract

The key electronic and spectroscopic properties of vitamin B(6) (pyridoxine) and some of its main charged and protonated/deprotonated species are explored using hybrid density functional theory (DFT) methods including polarized solvation models. It is found that the dominant species at low pH is the N(1)-protonated form and, at high pH, the O(3)(')-deprotonated compound. Computed and experimental UV-spectra for these species (experimental spectra recorded at pH 1.7 and 11.1, respectively) show a very close resemblance. At pH 4.3, the protonated species dominates, but with onset of the zwitterionic oxo form which is also the dominant species at neutral pH. The computational studies furthermore show that neither a polarized continuum model of the polar aqueous solvent or explicit hydrogen bonding through additional water molecules are sufficient to describe accurately the spectrum at physiological pH. Instead, Na(+) and Cl(-) counterions were required to give a blue-shift of approximately 0.15 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.