Abstract

AbstractAcidic microenvironments in solid tumors are a hallmark of cancer. Inspired by that, we designed a family of pseudopeptidic cage‐like anionophores displaying pH‐dependent activity. When protonated, they efficiently bind chloride anions. They also transport chloride through lipid bilayers, with their anionophoric properties improving at acidic pH, suggesting an H+/Cl− symport mechanism. NMR studies in DPC micelles demonstrate that the cages bind chloride within the lipid phase. The chloride affinity and the chloride‐exchange rate with the aqueous bulk solution are improved when the pH is lowered. This increases cytotoxicity towards lung adenocarcinoma cells at the pH of the microenvironment of a solid tumor. These properties depend on the nature of the amino‐acid side chains of the cages, which modulate their lipophilicity and interactions with the cell membrane. This paves the way towards using pH as a parameter to control the selectivity of cytotoxic ionophores as anticancer drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.