Abstract
The pH dependence of the friction between a silica particle and a silica wafer was investigated using lateral force microscopy. Measurements were done in the range of 3.6 ≦ pH ≦ 10.6 and the effect of high loading force was also examined. It is found that the friction is independent of the pH of solutions and increases linearly with the applied load, when the pH is between 3.6 and 8.6. On the other hand, once the pH is above 9.0, the friction becomes extremely small and the dependence on the applied load becomes nonlinear. It is postulated that this transition is due to the development of a gel layer composed of polymer-like segments of silicilic acid anchored on the surface; at the lower applied load, this layer acts as a boundary lubricant between the surfaces, but, at the higher applied load, the entanglements of these segments and more direct contact between two solid surfaces leads to the increase of the friction. The effects found here are expected to play an important role in elucidating the basic mechanism of the planarization process of silica wafers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.