Abstract

We examined the effects of HCO(3)(-) and CO(2) acidosis on osteoclast-mediated Ca(2+) release from 3-day cultures of neonatal mouse calvaria. Ca(2+) release was minimal above pH 7.2 in control cultures but was stimulated strongly by the addition of small amounts of H(+) to culture medium (HCO(3)(-) acidosis). For example, addition of 4 meq/l H(+) reduced pH from 7.12 to 7.03 and increased Ca(2+) release 3.8-fold. The largest stimulatory effects (8- to 11-fold), observed with 15-16 meq/l added H(+), were comparable to the maximal Ca(2+) release elicited by 1,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3); 10 nM], parathyroid hormone (10 nM), or prostaglandin E(2) (1 microM); the action of these osteolytic agents was attenuated strongly when ambient pH was increased from approximately 7.1 to approximately 7.3. CO(2) acidosis was a less effective stimulator of Ca(2+) release than HCO(3)(-) acidosis over a similar pH range. Ca(2+) release stimulated by HCO(3)(-) acidosis was almost completely blocked by salmon calcitonin (20 ng/ml), implying osteoclast involvement. In whole mount preparations of control half-calvaria, approximately 400 inactive osteoclast-like multinucleate cells were present; in calvaria exposed to HCO(3)(-) acidosis and to the other osteolytic agents studied, extensive osteoclastic resorption, with perforation of bones, was visible. HCO(3)(-) acidosis, however, reduced numbers of osteoclast-like cells by approximately 50%, whereas 1,25(OH)(2)D(3) treatment caused increases of approximately 75%. The results suggest that HCO(3)(-) acidosis stimulates resorption by activating mature osteoclasts already present in calvarial bones, rather than by inducing formation of new osteoclasts, and provide further support for the critical role of acid-base balance in controlling osteoclast function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.