Abstract

Microbial rhodopsins are photoactive proteins, and their binding site can accommodate either all-trans or 13-cis retinal chromophore. The pH dependence of isomeric composition, dark-adaptation rate, and primary events of Anabaena sensory rhodopsin (ASR), a microbial rhodopsin discovered a decade ago, are presented. The main findings are: (a) Two pKa values of 6.5 and 4.0 assigned to two different protein residues are observed using spectroscopic titration experiments for both ground-state retinal isomers: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). The protonation states of these protein residues affect the absorption spectrum of the pigment and most probably the isomerization process of the retinal chromophore. An additional pKa value of 8.5 is observed only for 13C-ASR. (b) The isomeric composition of ASR is determined over a wide pH range and found to be almost pH-independent in the dark (>96% AT isomer) but highly pH-dependent in the light-adapted form. (c) The kinetics of dark adaptation is recorded over a wide pH range, showing that the thermal isomerization from 13C to AT retinal occurs much faster at high pH rather than under acidic conditions. (d) Primary photochemical events of ASR at pH 5 are recorded using VIS hyperspectral pump-probe spectroscopy with <100 fs resolution and compared with the previously recorded results at pH 7.5. For AT-ASR, these are shown to be almost pH-independent. However, photochemistry of 13C-ASR is pH-dependent and slowed down in acidic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call