Abstract

Adsorption of surfactants on solids plays an important role in industrial operations such as separation, lubrication, flotation, dispersion, chemical mechanical polishing, and enhanced oil recovery. In this work, adsorption of a typical biodegradable nonionic surfactant, n-dodecyl- β- d-maltoside, on solids was studied to explore its potential applications. Even though it is a nonionic surfactant, significant pH-dependence was revealed for the adsorption on alumina in the range from pH 4 to 7. The adsorption density was found to be proportional to the concentration of surface AlOH group among Al(OH 2) + and AlO − groups. The equilibriums among the surface species are governed by pH through surface ionization reactions. The surface AlOH group evidently determines the formation of hydrogen bonding between the surfactant molecules and the solid surface and thus the adsorption. Similar correlation was also found in the case of hematite. The results help to understand the mechanism of adsorption of sugar-based surfactant on solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.