Abstract
ABSTRACTThe behavior of a mixture of negatively charged cellulose nanocrystals (CNCs) and positively charged poly(allylamine) (PAAm) is examined in aqueous media. By modulating the pH, the acting Coulomb forces can be varied that can lead not only to adsorption of PAAm chains on the CNC surface but also to the development of a supermolecular structure by bridging of CNC rods by extended PAAm chains. This bridging can result in the formation of CNC clusters, which was demonstrated experimentally. Light scattering and rheological studies showed that these clusters begin to grow and merge, ultimately forming a global percolated network above a critical degree of PAAm ionization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1527–1536
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.