Abstract
pH-Switchable, fluorescent, hybrid, water-dispersible nanomaterials based on boron nitride nanotubes (BNNTs) and grafted copolymer brushes (poly(acrylic acid-co-fluorescein acrylate) – P(AA-co-FA)) were successfully fabricated in a two-step process. The functionalization of BNNTs was confirmed by spectroscopic, gravimetric and imaging techniques. In contrast to “pure” BNNTs, P(AA-co-FA)-functionalized BNNTs demonstrate intense green fluorescence emission at 520 nm. Under neutral or alkaline pH values, P(AA-co-FA)-functionalized BNNTs are highly emissive in contrast to acidic pH conditions where the fluorescent intensity is absent or low. No increase in the absorption was observed when the suspension pH was increased from 7 to 10. The functionalized BNNTs are easily taken up by human normal prostate epithelium (PNT1A) and human prostate cancer cell lines (DU145) and are suitable for further evaluation in cellular imaging applications.
Highlights
In recent years, considerable effort has been devoted to the development of hybrid nanomaterials [1,2,3,4,5] to generate novel structures with tunable properties through external stimuli such as pH, temperature, light, and magnetic field [6,7,8,9,10]
The pH-responsive fluorescent coatings were formed on the boron nitride nanotubes (BNNTs) surface via a simple two-step process as outlined in Scheme 1 and described in detail in the Experimental section
The fabrication of the oligoperoxide-functionalized BNNTs was described in detail in our previous publication [12] and here we focus on the synthesis and properties of the P(AA-co-fluorescein acrylate (FA))-functionalized BNNTs
Summary
Considerable effort has been devoted to the development of hybrid nanomaterials [1,2,3,4,5] to generate novel structures with tunable properties through external stimuli such as pH, temperature, light, and magnetic field [6,7,8,9,10]. The second step involves the grafting polymerization “from the surface” of oligoperoxide-functionalized BNNTs. With this procedure, we have created a hybrid nanomaterial for cellular imaging based on BNNTs and grafted brushes of pH-responsive fluorescent copolymer poly(acrylic acid-co-fluorescein acrylate) – P(AA-co-FA). The fabrication of the oligoperoxide-functionalized BNNTs was described in detail in our previous publication [12] and here we focus on the synthesis and properties of the P(AA-co-FA)-functionalized BNNTs. The functionalized BNNTs after the copolymerization of acrylic acid and fluorescein acrylate has demonstrated an excellent dispersibility in water (Figure 1b) forming a suspension with a light-yellow color without the formation of any visible aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.