Abstract

The degradation of (micro)gels and fractal aggregates based on self-assembled amphiphilic triblock copolymers has been investigated in water by confocal microscopy and light scattering respectively. The triblock copolymer consisted of a central hydrophilic poly(acrylic acid) (pAA) block and two hydrophobic end blocks that contained an equal amount of randomly distributed n-butyl acrylate (nBA) and AA units. These latter units helped at tempering the hydrophobic end blocks resulting in the control and the fine tuning of the dynamics of the self-assembled triblock through the pH. Starting from a pH where the dynamics is frozen, the rate of breakup of the macroscopic gels, microgels and of fractal aggregates was measured after increasing the pH to different values. The mechanism of the breakup was found to be independent of the pH, but its rate increased exponentially with increasing pH. The degradation proceeded through the release of the polymers from the bulk into the surrounding aqueous phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call