Abstract
A pH- and ultrasound dual-responsive drug release pattern was successfully achieved using mesoporous silica nanoparticles (MSNs) coated with polydopamine (PDA). In this paper, the PDA shell on the MSN surface was obtained through oxidative self-polymerization under the alkaline condition. The morphology and structure of this composite nanoparticle were fully characterized by a series of analyses, such as infrared (IR), transmission electron microscopy, and thermogravimetric analysis. Doxorubicin hydrochloride (DOX)-loaded composite nanoparticles were used to study the performances of responsive drug storage/release behavior, and this kind of hybrid material displayed an apparent pH response in DOX releasing under the acidic condition. Beyond that, upon high-intensity focused ultrasound exposure, loaded DOX in composite nanoparticles was successfully triggered to release from pores because of the ultrasonic cavitation effect, and the DOX-releasing pattern could be optimized into a unique pulsatile fashion by switching the on/off status. From the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, it was observed that our blank nanoparticles showed no toxicity to HeLa cells, but DOX-loaded nanoparticles could inhibit the growth of tumor cells. Furthermore, these composite nanoparticles displayed an effective near-IR photothermal conversion capability with a relatively high conversion efficiency (∼37%). These as-desired drug delivery carriers might have a great potential for future cancer treatment that combine the chemotherapy and photothermal therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.