Abstract

The thermodynamics of Cu(II) to Cu(I) reduction and the kinetics of the electron transfer (ET) process for Rhus vernicifera stellacyanin (STC) immobilized on a decane-1-thiol coated gold electrode have been measured through cyclic voltammetry at varying pH and temperature, in the presence of urea and in D(2)O. Immobilized STC undergoes a limited conformational change that mainly results in an enhanced exposure of one or both copper binding histidines to solvent which slightly stabilizes the cupric state and increases histidine basicity. The large immobilization-induced increase in the pK(a) for the acid transition (from 4.5 to 6.3) makes this electrode-SAM-protein construct an attractive candidate as a biomolecular ET switch operating near neutral pH in molecular electronics. Such a potential interest is increased by the robustness of this interface against chemical unfolding as it undergoes only moderate changes in the reduction thermodynamics and in the ET rate in the presence of up to 8 M urea. The sensitivity of these parameters to solvent H/D isotope effects testifies to the role of protein solvation as effector of the thermodynamics and kinetics of ET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.