Abstract

Rheumatoid arthritis (RA) progression involves multiple cell types, and sequential drug action on target cells is necessary for RA treatment. Nanocarriers are widely used for RA treatment; however, the targeted delivery and on-demand release of multiple drugs remains challenging. Therefore, in this study, a dual-sensitive polymer is developed using chondroitin sulfate (CS) for the co-delivery of the cartilage repair agent, glucosamine (GlcN), and anti-inflammatory drug, tofacitinib (Tof). In the joint cavity, acidic pH facilitates the cleavage of GlcN from CS polymer to repair the cartilage damage. Subsequently, macrophage uptake via CS-CD44 binding and intracellular reactive oxygen species (ROS) mediate conversion of (methylsulfanyl)propylamine to a hydrophilic segment jointly triggered rapid Tof/GlcN release via micelle disassembly. The combined effects of Tof, GlcN, and ROS depletion promote the M1-to-M2 polarization shift to attenuate inflammation. The synergistic effects of these agents against RA are confirmed in vitro and in vivo. Overall, the dual pH/ROS-sensitive CS nanoplatform simultaneously delivers GlcN and Tof, providing a multifunctional approach for RA treatment with synergistic drug effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call