Abstract

A series of pH/reduction dual responsive poly(ethylene glycol)/polyurethane triblock copolymers containing tertiary amines and disulfide bonds are reported. The polyurethane block copolymers self-assembled into stable micelles in aqueous medium at pH 7.4, which responded rapidly to both a narrow pH change within the physiologically relevant pH range and a reduction environment mimicking the intracellular space. The in vitro drug release from doxorubicin (DOX)-loaded polyurethane micelles was significantly accelerated by reducing the pH or by addition of an intracellular reducing agent, glutathione (GSH). Confocal laser scanning microscopy (CLSM) and flow cytometry measurements revealed that the intracellular drug release from the DOX-loaded nanoparticles was increased in the HeLa cells with enhanced intracellular GSH level. In addition, even though the polyurethane block copolymers exhibited good cytocompatibility, the DOX-loaded polyurethane micelles displayed efficient growth inhibition of HeLa and HepG2 cells, which showed a dependence on the intracellular GSH concentration. Owing to their unique responsiveness to dual biological stimuli, the biocompatible and bioreducible polyurethane block copolymers have the potential to serve as a versatile platform for intracellular drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call