Abstract

Mesoporous silica nanoparticles (MSN) have emerged as appealing host materials to accommodate guest molecules for biomedical applications, and recently various methods have been developed to modulate the loading of guest molecules in the silica matrix. Herein, it was demonstrated that pH and ion strength showed great influence on the loading of charged species into the nanoparticles, taking MCM-41 as a host MSN model and methylviologen (MV2+) and 1,5-naphthalene disulfonate (NDS2−) as typical charged ionic guest molecules. As the pH increased from 3.0 to 8.0, the loading amount of MV2+ increased gradually, while on the contrary, it decreased gradually for NDS2−, for the solution pH changed the electrostatic interaction between the silica matrix and the ionic guest molecules. Additionally, the adding of NaCl reduced the electrostatic interaction, which resulted in a decreasing of the electrostatic rejection and electrostatic accumulation for the molecules carrying the same and the opposite charge to the particle respectively. Thus, pH and ion strength can be employed as simple approaches to modulate the loading of charged molecules and permselectivity in MSN. This work has a definite guidance function for molecule loading, transport modulation, controlled release as well as sensors based on MSN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call