Abstract

Aquaporins increase the water permeability in many cell types across many species. We investigated the effects of external pH and Ca(2+) on water permeability of Xenopus oocytes injected with aquaporin cRNA by measuring the rate of swelling in hypotonic solutions. Lowering pH to 6.5 increased the water permeability of aquaporin (AQP0) 3.4 +/- 0.4-fold. Diethylpyrocarbonate pretreatment increased water permeability 4.2 +/- 0.5-fold and abolished pH sensitivity, suggesting that the pH regulation is mediated by an external histidine. Lowering Ca(2+) increased water permeability 4.1 +/- 0. 4-fold. The effects of Ca(2+) and pH each required the presence of histidine 40, indicating a critical role of this amino acid in facilitating the modulation of water permeability. Clamping intracellular Ca(2+) at high or low values abolished sensitivity to external Ca(2+), suggesting that Ca(2+) acts at an internal site. Three different calmodulin inhibitors each increased AQP0 water permeability, suggesting that Ca(2+) may act through calmodulin. None of the above altered the water permeability induced by AQP1 or AQP4. Because the greatest change in AQP0 water permeability is in the normal pH range found in the lens (7.2-6.5), this paper provides evidence for regulation of an aquaporin by pH under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.