Abstract

Succinate production was studied in Escherichia coli AFP111, which contains mutations in pyruvate formate lyase (pfl), lactate dehydrogenase (ldhA) and the phosphotransferase system glucosephosphotransferase enzyme II (ptsG). Two-phase fermentations using a defined medium at several controlled levels of pH were conducted in which an aerobic cell growth phase was followed by an anaerobic succinate production phase using 100% (v/v) CO(2). A pH of 6.4 yielded the highest specific succinate productivity. A metabolic flux analysis at a pH of 6.4 using (13)C-labeled glucose showed that 61% of the PEP partitioned to oxaloacetate and 39% partitioned to pyruvate, while 93% of the succinate was formed via the reductive arm of the TCA cycle. The flux distribution at a pH of 6.8 was also analyzed and was not significantly different compared to that at a pH of 6.4. Ca(OH)(2) was superior to NaOH or KOH as the base for controlling the pH. By maintaining the pH at 6.4 using 25% (w/v) Ca(OH)(2), the process achieved an average succinate productivity of 1.42 g/l h with a yield of 0.61 g/g.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call