Abstract
UDP-dependent glycosyltransferases (UGTs) convert aglycones into more stable, bioactive, and structurally diverse glycosylated derivatives. Pomegranate (Punica granatum L.) produces various glycosylated phenolic metabolites, e.g. hydrolyzable tannins (HTs), anthocyanins, and flavonoids, and constitutes an excellent system for investigating the corresponding UGT activities. Here we report the cloning and functional characterization of a pomegranate UGT, PgUGT95B2, which is highly active towards flavones and flavonols and can glycosylate at more than one position in the substrate molecule. Particularly, PgUGT95B2 has the strongest activity towards tricetin (flavone with a tri-hydroxylated B-ring) and can act at the 4‘-O position of its B-ring. In addition, PgUGT95B2 was able to glycosylate flavones present in pomegranate metabolite extracts. Conversely, PgUGT95B2 did not produce a galloylglucose ester (precursor for HT biosynthesis) or anthocyanins in enzyme assays. Our phylogenetic analysis suggested an independent evolution of PgUGT95B2 and flavone/flavonol UGTs identified in the model plant Arabidopsis thaliana through convergent evolution or gene loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.