Abstract
Drought is a major abiotic stress that occurs frequently due to climate change, severely hampers agricultural production, and threatens food security. In this study, the effect of drought-tolerant PGPRs, i.e., PGPR-FS2 and PGPR-VHH4, was assessed on wheat by withholding water. The results indicate that drought-stressed wheat seedlings treated with PGPRs-FS2 and PGPR-VHH4 had a significantly higher shoot and root length, number of roots, higher chlorophyll, and antioxidant enzymatic activities of guaiacol peroxidase (GPX) compared to without PGPR treatment. The expression study of wheat genes related to tryptophan auxin-responsive (TaTAR), drought-responsive (TaWRKY10, TaWRKY51, TaDREB3, and TaDREB4) and auxin-regulated gene organ size (TaARGOS-A, TaARGOS-B, and TaARGOS-D) exhibited significantly higher expression in the PGPR-FS2 and PGPR-VHH4 treated wheat under drought as compared to without PGPR treatment. The results of this study illustrate that PGPR-FS2 and PGPR-VHH4 mitigate the drought stress in wheat and pave the way for imparting drought in wheat under water deficit conditions. Among the two PGPRs, PGPR-VHH4 more efficiently altered the root architecture to withstand drought stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.