Abstract

It is crucial for successful gene delivery to develop safe, effective, and multifunctional polycations. Iodine-based small molecules are widely used as contrast agents for CT imaging. Herein, a series of star-like poly(glycidyl methacrylate) (PGMA)-based cationic vectors (II-PGEA/II) with abundant flanking polyhydric iodine units are prepared for multifunctional gene delivery systems. The proposed II-PGEA/II star vector is composed of one iohexol intermediate (II) core and five ethanolamine (EA) and II-difunctionalized PGMA arms. The amphipathic II-PGEA/II vectors readily self-assemble into well-defined cationic nanoparticles, where massive hydroxyl groups can establish a hydration shell to stabilize the nanoparticles. The II introduction improves cell viabilities of polycations. Moreover, by controlling the suitable amount of introduced II units, the resultant II-PGEA/II nanoparticles can produce fairly good transfection performances in different cell lines. Particularly, the II-PGEA/II nanoparticles induce much better in vitro CT imaging abilities in tumor cells than iohexol (one commonly used commercial CT contrast agent). The present design of amphipathic PGMA-based nanoparticles with CT contrast agents would provide useful information for the development of new multifunctional gene delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.