Abstract

P-glycoprotein (ABCB1) prevents absorption (e.g., blood-brain barrier) or enhances excretion (e.g., kidney) by moving substrates from the cytosolic to the extracellular membrane leaflet at the expense of ATP hydrolysis. It translocates various drugs and functions in membranes exhibiting different lateral packing densities. To gain more functional insight, we measured the temperature dependence of the P-glycoprotein ATPase activity in NIH-MDR1-G185 cell membranes in the absence and presence of three drugs (promazine, verapamil, and PSC833), exhibiting significantly different transporter affinities. Activation enthalpies (Delta H(++)) and entropies ( TDelta S(++)) were derived from Eyring plots. In the absence of drugs, the activation enthalpy and the free energy of activation for P-glycoprotein ATPase activity was determined as Delta H(++) = 92.6 +/- 4.2 kJ/mol and Delta G(++) = 73.1 +/- 7.2 kJ/mol, respectively. Increasing the drug concentration reduced the activation enthalpy, whereby the drug with the highest transporter affinity had the strongest effect (DeltaDelta H(++) = -21%). The free energy of activation decreased for activating (DeltaDelta G(++) = approximately -3.8%) and increased for inhibitory compounds (DeltaDelta G(++) = approximately +0.7%). The drug-specific changes of the free energy of activation are thus barely above thermal energy. A comparison with literature data revealed that a decrease of the lateral membrane packing density reduces the enthalpic and the entropic contribution to the free energy of activation. Although the P-glycoprotein ATPase activity increases only slightly with decreasing lateral membrane packing density, the mode of action changes from strongly entropy-driven at high, to essentially enthalpy-driven at low packing densities. This suggests that the transporter and the membrane form a functional entity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.