Abstract

P-glycoprotein is a transmembrane protein thought to function as an efflux pump to detoxify cells. It is associated with multidrug resistance in laboratory systems and has recently been found in human tumors associated with in vitro and clinical drug resistance. We used an immunohistochemical method employing two monoclonal antibodies, JSB-1 and C-219, to detect expression of P-glycoprotein in lymphoma patients. One of 42 newly diagnosed and untreated lymphoma patients (2%) and seven of 11 previously treated and drug-resistant patients (64%) had detectable levels of P-glycoprotein (P less than .001). Based on prior reports suggesting that verapamil sensitizes drug-resistant cancer cells to chemotherapy by competitive inhibition of the P-glycoprotein, we tested the efficacy of verapamil as a chemosensitizer in 18 patients with drug-refractory disease. All patients had previously failed or relapsed within 3 months of a doxorubicin-vincristine-containing drug regimen. Patients received day-1 cyclophosphamide, and 4-day continuous infusion doxorubicin and vincristine and oral dexamethasone (CVAD). CVAD was combined with 5-day continuous infusion verapamil given at maximally tolerated dose. Overall, 13 of 18 patients (72%) responded to treatment including five complete remissions (CRs; 28%). The median duration of response was 200 days and median survival was 242 days. The dose-limiting toxicity of the verapamil infusion was temporary cardiac dysfunction including hypotension, congestive heart failure, and cardiac arrhythmia. We conclude that the P-glycoprotein is uncommonly expressed in untreated lymphomas and frequently expressed in clinically drug-resistant disease, and that chemotherapy using CVAD plus maximally tolerated doses of verapamil results in a high response rate in patients carefully selected for clinical drug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.