Abstract

It is well known that opioid analgesics exert central antinociceptive actions. However, in vivo and in vitro studies have shown that some opioid analgesics given systemically have limited access to the central nervous system because of the blood-brain barrier (BBB). P-glycoprotein (P-gp), an ATP-dependent drug efflux transporter, is one component of the BBB. In this report, we assessed the antinociceptive effect of morphine, fentanyl, and meperidine in P-gp deficient ( mdr1a KO) mice, and compared these effects with those in wild type (WT) mice. The antinociceptive effects of morphine and fentanyl in mdr1a KO mice were significantly greater than those in WT mice. However, there was no clear difference in the antinociceptive effects of meperidine in the two genotypes. In addition, we determined the effect of opioid analgesics on P-gp ATPase activity, which is requisite for drug transport, using mouse brain capillary endothelial cells. In our observations, morphine and fentanyl, but not meperidine, significantly increased P-gp ATPase activity, and the drugs' concentration-response curves were bell-shaped, reaching a peak at a concentration of 1 μM. These results suggest that P-gp ATPase activity may be, at least in part, involved in the antinociceptive potencies of those opioid analgesics that are substrates for P-gp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.