Abstract

The P-glycoprotein multidrug transporter (Pgp; ABCB1) is an ATP-binding cassette (ABC) protein that has been implicated in the multidrug resistance of human cancers. Pgp couples ATP hydrolysis to active extrusion from the cell of a broad array of amphipathic compounds via an ill-defined mechanism. Substrates are believed to interact with Pgp within the membrane. Reconstituted Pgp functions as an ATP-dependent flippase for a variety of fluorescently labelled membrane lipids. The protein may also function as a drug 'flippase', moving its substrates from the inner to the outer leaflet of the bilayer. We show that lipid-based anti-cancer drugs, such as miltefosine, and signaling molecules, such as platelet-activating factors, bind saturably to Pgp with Kd values in the low micromolar range, and modulate its ATPase activity. These compounds also inhibit Pgp-mediated flipping of fluorescent lipids and transport of Hoechst 33342 and tetramethylrosamine, which occupy different subsites in the drug-binding pocket. Bacterial lipid A modulates Pgp ATPase activity, and glycolipid flipping is inhibited by unlabelled glucosylceramide, suggesting that these lipids also interact with the transporter. These results indicate that Pgp treats a variety of lipid-based molecules as substrates, and likely interacts with lipids and drugs in the same manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call