Abstract

For a finite group G, let Z(G) denote the center of G and cs*(G) be the set of non-trivial conjugacy class sizes of G. In this paper, we show that if G is a finite group such that for some odd prime power q ? 4, cs*(G) = cs*(PGL2(q)), then either G ? PGL2(q) X Z(G) or G contains a normal subgroup N and a non-trivial element t ? G such that N ? PSL2(q)X Z(G), t2 ? N and G = N. ?t?. This shows that the almost simple groups cannot be determined by their set of conjugacy class sizes (up to an abelian direct factor).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.