Abstract

Prostaglandins (PG)E2 and prostacyclin (PGI2) can cause vasodilation in selective vascular beds and could act in part by inhibiting the production of the vasoconstrictor endothelin-1 (ET-1). We recently reported that these prostanoids inhibit ET-1 production/secretion from cultured endothelial cells via the generation of guanosine 3'-5'-cyclic monophosphate (cGMP). It is unclear whether this results from the stimulation of the particulate (membrane) of soluble (cytosolic) form of guanylate cyclase, and whether these effects are through an intermediate, such as nitric oxide. PGE2 and PGI2 each caused a three- to fourfold increase in both membrane and whole bovine aortic endothelial cell guanylate cyclase activity. The stimulations were significantly reversed (80-90%) by the compound LY-83583, an antagonist to cGMP generation, but were unaffected by methylene blue (MB), an inhibitor of nitric oxide-induced soluble guanylate cyclase. In contrast, the prostaglandins did not generate cGMP in cytosolic fractions. The prostaglandins inhibited ET-1 secretion from the intact cells, which was significantly prevented by LY-83583, but not by MB. Neither prostaglandin stimulated NO synthase activity, an indicator of nitric oxide generation. We conclude that PGE2 and PGI2 are likely to inhibit ET-1 secretion through the activation of the particulate guanylate cyclase, identifying a novel mechanism by which the prostanoids signal in the endothelial cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.