Abstract
AbstractThermal transient problems, essential for modeling applications like welding and additive metal manufacturing, are characterized by a dynamic evolution of temperature. Accurately simulating these phenomena is often computationally expensive, thus limiting their applications, for example for model parameter estimation or online process control. Model order reduction, a solution to preserve the accuracy while reducing the computation time, is explored. This article addresses challenges in developing reduced order models using the proper generalized decomposition (PGD) for transient thermal problems with a specific treatment of the moving heat source within the reduced model. Factors affecting accuracy, convergence, and computational cost, such as discretization methods (finite element and finite difference), a dimensionless formulation, the size of the heat source, and the inclusion of material parameters as additional PGD variables are examined across progressively complex examples. The results demonstrate the influence of these factors on the PGD model's performance and emphasize the importance of their consideration when implementing such models. For thermal example, it is demonstrated that a PGD model with a finite difference discretization in time, a dimensionless representation, a mapping for a moving heat source, and a spatial domain non‐separation yields the best approximation to the full order model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.