Abstract

Long-term usage of rosiglitazone, a synthetic PPARgamma agonist, increases fracture rates among diabetic patients. PPARgamma suppresses osteoblastogenesis while activating osteoclastogenesis, suggesting that rosiglitazone decreases bone formation while sustaining or increasing bone resorption. Using mouse models with genetically altered PPARgamma, PGC1beta, or ERRalpha, here we show that PGC1beta is required for the resorption-enhancing effects of rosiglitazone. PPARgamma activation indirectly induces PGC1beta expression by downregulating beta-catenin and derepressing c-jun. PGC1beta, in turn, functions as a PPARgamma coactivator to stimulate osteoclast differentiation. Complementarily, PPARgamma also induces ERRalpha expression, which coordinates with PGC1beta to enhance mitochondrial biogenesis and osteoclast function. ERRalpha knockout mice exhibit osteoclast defects, revealing ERRalpha as an important regulator of osteoclastogenesis. Strikingly, PGC1beta deletion in osteoclasts confers complete resistance to rosiglitazone-induced bone loss. These findings identify PGC1beta as an essential mediator for the PPARgamma stimulation of osteoclastogenesis by targeting both PPARgamma itself and ERRalpha, thus activating two distinct transcriptional programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.