Abstract

Oxidative stress can induce inflammation, promoting macrophage polarization and liver fibrosis following hepatic ischemia-reperfusion (I/R). Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has anti-oxidant and anti-inflammatory activity. However, how PGC-1α regulates macrophage polarization following hepatic I/R remains largely unknown. Male C57BL/6 wild-type mice were pre-treated with vehicle or trichostatin A (TSA) for 2 days and subjected to surgical induction of I/R. Liver injury and fibrosis in individual mice were examined longitudinally and the expression levels of IL-6, STAT3, M2-type macrophage markers, Collagen I and α-SMA in the liver of mice were analyzed by immunohistochemistry, RT-qPCR and Western blot. The potential interaction of PGC-1α with phosphorylated NF-kBp65 was determined by immunoprecipitation. The impacts of PGC-1α deficiency in hepatocytes on their IL-6 production and macrophage polarization were tested in a Transwell co-culture system. Moreover, the M2-type macrophage polarization and liver fibrosis were examined in hepatocyte-specific PGC-1α knockout mice and AAV8-mediated PGC-1α over-expressing mice following liver I/R. The down-regulated PGC-1α expression by I/R was negatively correlated with IL-6 levels in the liver of I/R mice and PGC-1α deficiency enhanced IL-6 expression, STAT3 activation and M2-type macrophage polarization in the I/R mice, which were abrogated by TSA treatment. In addition, PGC-1α directly interacted with phosphorylated NF-kBp65 in I/R livers. Hepatocyte-specific PGC-1α deficiency increased IL-6 production and promoted macrophage polarization toward M2 type when co-culture. More importantly, administration with AAV8-PGC-1α rescued the I/R-induced liver fibrosis by inhibiting the IL-6/JAK2/STAT3 signaling and M2-type macrophage polarization in the liver. These results suggest that PGC-1α may alleviate the I/R-induced liver fibrosis by attenuating the IL-6/JAK2/STAT3 signaling to limit M2-type macrophage polarization. PGC-1α may be a therapeutic target for the treatment of liver fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.