Abstract

Cancer-induced bone pain (CIBP) stands out as one of the most challenging issues in clinical practice due to its intricate and not fully elucidated pathophysiological mechanisms. Existing evidence has pointed toward the significance of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) down-regulation in contributing to pain behaviors in various rodent models of neuropathic pain. In our current study, we aimed to investigate the role of PGC-1α in CIBP. Our results unveiled a reduction in PGC-1α expression within the spinal cord of CIBP rats, particularly in GABAergic interneurons. Notably, intrathecal administration of the PGC-1α activator ZLN005 suppressed the loss of spinal GABAergic interneurons. This suppression was achieved by inhibiting caspase-3-mediated apoptosis, ultimately leading to the alleviation of mechanical allodynia in CIBP rats. Further exploration into the mechanism revealed that PGC-1α activation played a pivotal role in mitigating ATP depletion and reactive oxygen species accumulation linked to mitochondrial dysfunction. This was achieved through the restoration of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. Impressively, the observed effects were prominently reversed upon the application of SR18292, a specific PGC-1α inhibitor. In conclusion, our findings strongly suggest that PGC-1α activation acts as a potent inhibitor of apoptosis in spinal GABAergic interneurons. This inhibition is mediated by the improvement of mitochondrial function, facilitated in part through the enhancement of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. The results of our study shed light on potential therapeutic avenues for addressing CIBP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.