Abstract
Calcium aluminate cement (CAC) is a penitential candidate for bone replacements with good bioactivity but relative lower strength. In this study, biodegradable PGA fiber was incorporated into the CAC paste in order to improve the strength of the material. And MC3T3 cells were seeded on the surface of CAC and CAC/fiber to study their in vitro biocompatibility. The results indicate that the PGA fiber can improve the compressive strength of CAC without changing the crystalline phases and micromorphology. Calcium aluminate oxide hydrate, katoite and Gibbsite crystals were detected by XRD. Plate-like crystals can be observed under FESEM. The MC3T3 cells were attached well on both CAC and CAC/fiber composite, indicating their good in vitro biocompatibility. In summary, fiber reinforcement can be an effective way to improve the properties of calcium aluminate cement for orthopaedic application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.