Abstract

Metabolic reprogramming, in particular, glycolytic regulation, supports abnormal survival and growth of hepatocellular carcinoma (HCC) and could serve as a therapeutic target. In this study, we sought to identify glycolytic regulators in HCC that could be inhibited to prevent tumor progression and could also be monitored invivo, with the goal of providing a theragnostic alternative to existing therapies. An orthotopic HCC rat model was used. Tumors were stimulated into a high-proliferation state by use of off-target liver ablation and were compared with lower-proliferating controls. We measured invivo metabolic alteration in tumors before and after stimulation, and between stimulated tumors and control tumors using hyperpolarized 13C magnetic resonance imaging (MRI) (h13C MRI). We compared metabolic alterations detected by h13C MRI to metabolite levels from exvivo mass spectrometry, mRNA levels of key glycolytic regulators, and histopathology. Glycolytic lactate flux increased within HCC tumors 3 days after tumor stimulation, correlating positively with tumor proliferation as measured with Ki67. This was associated with a shift towards aerobic glycolysis and downregulation of the pentose phosphate pathway detected by mass spectrometry. MRI-measured lactate flux was most closely coupled with PFKFB3 expression and was suppressed with direct inhibition using PFK15. Inhibition of PFKFB3 prevents glycolytic-mediated HCC proliferation, trackable by invivo h13C MRI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.