Abstract

1,2-dichloroethane (DCA) is a toxic synthetic haloalkane produced annually in excess of 20 billion tons. Five bacterial isolates capable of complete mineralization of DCA have recently been isolated from wastewater treatment facilities in South Africa. Pulsed field gel electrophoresis (PFGE) and random amplification of polymorphic DNA (RAPD) analysis were employed in this study to identify phylogenetic differences between these closely-related bacteria. Analysis of the 16S rDNA sequences of the selected isolates revealed similarities to previously characterised isolates of Ancylobacter aquaticus. It has been previously shown that all isolates follow the same catabolic pathway and possess an identical hydrolytic dehalogenase (DhlA) involved in the initial carbonchlorine bond cleavage. Analysis of homology matrices deduced from RAPD and restriction profiles, constructed using the GelCompar software package, revealed that although some of the isolates possessed identical profiles using one primer or restriction endonuclease, differences were observed when a different primer was used. Furthermore, the results obtained indicate that the previously characterised isolate A. aquaticus AD25 is significantly different from the isolates used in this study. PFGE was also able to show that isolates of A. aquaticus do not possess the 200 kb plasmid containing the hydrolytic dehalogenase gene previously identified in the DCA-degrading bacterium Xanthobacter autotrophicus GJ10. This study has been able to demonstrate that RAPD and PFGE analysis are suitable molecular tools for the differentiation of closely-related A. aquaticus isolates and may be routinely used in the differentiation of environmentally important bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call