Abstract

BackgroundDespite the importance of the Plasmodium berghei oocyst capsule protein (PbCap380) in parasite survival, very little is known about the orthologous Plasmodium falciparum capsule protein (PfCap380). The goal of this work was to study the growth of P. falciparum oocysts using PfCap380 as a developmental marker.MethodsTo study P. falciparum oocyst development using both in vivo (mosquito-derived) and in vitro (culture-derived) growth conditions, antibodies (polyclonal antisera) were raised against PfCap380. For studies on in vivo oocysts, mature P. falciparum gametocytes were fed to Anopheles stephensi mosquitoes. For studies on in vitro parasites, P. falciparum gametocytes were induced and matured for subsequent ookinete production. Ookinetes were purified and then tested for binding affinity to basal lamina components and transformation into early oocysts, which were grown on reconstituted basal lamia coated wells with novel oocyst media. To monitor in vivo oocyst development, immunofluorescence assays (IFA) were performed using anti-PfCap380 antisera on Pf-infected mosquito midguts. IFA were also performed on culture-derived oocysts to follow in vitro oocyst development.ResultsThe anti-PfCap380 antisera allowed detection of early midgut oocysts starting at 2 days after gametocyte infection, while circumsporozoite protein was definitively observed on day 6. For in vitro culture, significant transformation of gametocytes to ookinetes (24%) and of ookinetes to early oocysts (85%) was observed. After screening several basal lamina components, collagen IV provided greatest binding of ookinetes and transformation into early oocysts. Finally, PfCap380 expression was observed on the surface of culture-derived oocysts but not on gametocytes or ookinetes.ConclusionsThis study presents developmental monitoring of P. falciparum oocysts produced in vivo and in vitro. The anti-PfCap380 antisera serves as an important reagent for developmental studies of oocysts from the mosquito midgut and also from oocyst culture using in vitro methodology. The present data demonstrate that PfCap380 is a useful marker to follow the development and maturation of in vivo and in vitro produced oocysts as early as 2 days after zygote formation. Further in vitro studies focused on oocyst and sporozoite maturation will support the manufacturing of whole sporozoites for malaria vaccines.

Highlights

  • Despite the importance of the Plasmodium berghei oocyst capsule protein (PbCap380) in parasite survival, very little is known about the orthologous Plasmodium falciparum capsule protein (PfCap380)

  • The only known oocyst-specific protein to date is an oocyst capsule protein, Cap380, which was originally identified in P. berghei (PbCap380) from a subtraction library of genes enriched for expression during the oocyst stage [27]

  • Immunogen design and generating anti‐PfCap380 antisera While a previous study in P. berghei generated an antibody against PbCap380, the anti-PbCap380 antibody does not cross-react with P. falciparum infected midgut oocysts, prohibiting usability in P. falciparum oocyst developmental studies [13], Unpublished observations]

Read more

Summary

Introduction

Despite the importance of the Plasmodium berghei oocyst capsule protein (PbCap380) in parasite survival, very little is known about the orthologous Plasmodium falciparum capsule protein (PfCap380). Malaria persists in many countries due to lack of resources, non-compliance, and resistance to insecticides and drugs. In addition to these tools, several vaccine approaches are in development including singlesubunit vaccines and live whole-parasite vaccines based on the sporozoite (SPZ) stage. Of the single-subunit vaccines, RTS, S/AS-01 (RTS, S) is the most developed and primarily targets humoral immune responses against the major SPZ surface antigen, circumsporozoite protein (CSP). Unlike single-subunit vaccines, whole-SPZ vaccines target humoral and cellular immune responses against considerably more antigens and can provide complete protection against Plasmodium infection in mice and humans [3,4,5]. Attenuated SPZ infect liver cells but are developmentally blocked to prevent blood stage transition, conferring immunity without causing symptoms [3, 4, 6,7,8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call