Abstract
One of the most pressing problems of the post genomic era is identifying protein functions. Clustering Protein-Protein-Interaction networks is a systems biological approach to this problem. Traditional Graph Clustering Methods are crisp, and allow only membership of each node in at most one cluster. However, most real world networks contain overlapping clusters. Recently the need for scalable, accurate and efficient overlapping graph clustering methods has been recognized and various soft (overlapping) graph clustering methods have been proposed. In this paper, an efficient, novel, and fast overlapping clustering method is proposed based on purifying and filtering the coupling matrix (PFC). PFC is tested on PPI networks. The experimental results show that PFC method outperforms many existing methods by a few orders of magnitude in terms of average statistical (hypergeometrical) confidence regarding biological enrichment of the identified clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.