Abstract

Plug-in electric vehicles (PEVs) offer a solution to reduce greenhouse gas emissions and decrease fossil fuel consumption. PEV charging infrastructure siting must ensure not only a satisfactory charging service for PEV users but also a high utilization and profitability for the chosen facility locations. Thus, the various types of charging facilities should be located based on an accurate location estimation of the potential PEV charging demand. In this paper, we propose a spatial–temporal flow capturing location model. This model determines the locations of various types of charging facilities based on the spatial–temporal distribution of traffic flows. We utilize the dynamic traffic assignment model to estimate the time-varying traffic flows on the road transportation network. Then, we cluster the traffic flow dataset into distinct categories using the Gaussian mixture model and site each type of charging facilities to capture a specific traffic pattern. We formulate our siting model as an mixed integer linear programming optimization problem. The model is evaluated based on two benchmark transportation networks, and the simulation results demonstrate the effectiveness of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.