Abstract

The constituents of Peucedanum japonicum Thunb. (PJ) exhibit biological and pharmacological activities, including anti-obesity, anti-oxidant and anti-allergic activities. The aim of the present study was to examine in vitro effects of PJ in RANKL-induced signaling pathways, which determine osteoclast differentiation. PJ ethanol extract (PEE) exhibited anti-osteoporotic activity by disrupting the phospholipase C (PLC)-Ca2+-c-Fos/cAMP response element-binding protein (CREB)-nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway during osteoclastogenesis. Murine bone marrow-derived macrophages (BMMs) were cultured and used to determine the effects of PJ in the receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis. The effects of PEE in the RANKL-mediated signaling cascade were evaluated using a standard in vitro osteoclastogenesis system. PEE treatment of BMMs significantly reduced the number of RANKL-mediated tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (P<0.05 for 5 and 10 µg/ml PEE, P<0.01 for 25 and 50 µg/ml PEE), without cytotoxic effects. Furthermore, the expression of differentiation-related marker genes, including TRAP, Oscar, Cathepsin K, dendrocyte expressed seven transmembrane protein, ATPase H+ Transporting V0 Subunit D2 and NFATc1, were markedly suppressed. PEE induced a transient increase in free cytoplasmic Ca2+ ([Ca2+]i) mobilization via voltage-gated Ca2+ channels and PLC-sensitive pathways. Transient [Ca2+]i increase consequently resulted in the suppression of c-Fos, CREB and NFATc1 activities. These findings highlight the potential use of PJ in treating bone disorders caused by osteoclast overgrowth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call