Abstract

Circularly rotating axisymmetric perfect fluid space-times are investigated to second order in the small angular velocity. The conditions of various special Petrov types are solved in a comoving tetrad formalism. A number of theorems are stated on the possible Petrov types of various fluid models. It is shown that Petrov type II solutions must reduce to the de Sitter spacetime in the static limit. Two space-times with a physically satisfactory energy-momentum tensor are investigated in detail. For the rotating incompressible fluid, it is proven that the Petrov type cannot be D. The equation of the rotation function $\omega $ can be solved for the Tolman type IV fluid in terms of quadratures. It is also shown that the rotating version of the Tolman IV space-time cannot be Petrov type D.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.