Abstract

Petrophysics of coals directly affects the development of coalbed methane (CBM). Based on the analysis of the representative academic works at home and abroad, the recent progress on petrophysics characteristics was reviewed from the aspects of the scale-span pore-fracture structure, permeability, reservoir heterogeneity, and its controlling factors. The results showed that the characterization of pore-fracture has gone through three stages: qualitative and semiquantitative evaluation of pore-fracture by various techniques, quantitatively refined characterization of pore-fracture by integrating multiple methods including nuclear magnetic resonance analysis, liquid nitrogen, and mercury intrusion, and advanced quantitative characterization methods of pore-fracture by high-precision experimental instruments (focused-ion beam-scanning electron microscopy, small-angle neutron scattering and computed tomography scanner) and testing methods (µ-CT scanning and X-ray diffraction). The effects of acoustic field can promote the diffusion of CBM and generally increase the permeability of coal reservoirs by more than 10%. For the controlling factors of reservoir petrophysics, tectonic stress is the most crucial factor in determining permeability, while the heterogeneity of CBM reservoirs increases with the enhancement of the tectonic deformation and stress field. The study on lithology heterogeneity of deep and high-dip coal measures, the spatial storage-seepage characteristics with deep CBM reservoirs, and the optimizing production between coal measures should be the leading research directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.