Abstract

We explore the petrophysical behavior of the two interbedded lithofacies (sandy silt and clayey silt) that constitute the Green Canyon Block 955 hydrate reservoir in the deep-water Gulf of Mexico by performing experiments on reconstituted samples of the reservoir material. Sandy silts reconstituted to the in situ porosity have a permeability of 11.8 md (1.18 × 10−14 m2), which is similar to the intrinsic permeabilities measured in intact cores from hydrate reservoirs of similar grain size offshore Japan (Nankai Trough) and offshore India. Reconstituted clayey silts have a much lower intrinsic permeability of 3.84 × 10−4 md (3.84 × 10−19 m2) at the in situ stress. The reconstituted sandy silt is less compressible than the clayey silt. Mercury injection capillary pressure measurements demonstrate that the largest pores with the clayey silt are still smaller than the pores remaining after 90% hydrate saturation in sandy silt. We interpret that the methane solubility in pores of clayey silt is always less than that necessary to form hydrate, which explains why no hydrate is present in the clayey silt. We upscale the reservoir properties to estimate the behavior of interbedded sandy silt and clayey silt. We find the upscaled intrinsic horizontal and vertical permeabilities for the entire reservoir interval are 8.6 md (8.6 × 10−15 m2) and 1.4 × 10−3 md (1.4 × 10−18 m2). We estimate that during reservoir production, a maximum vertical strain of approximately 12% will result. Ultimately, this study will inform reservoir simulation models with petrophysical properties at scales of both individual lithofacies and reservoir formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call