Abstract

The Proterozoic succession in the National Drilling Initiative Carrara 1 drill hole, Northern Territory, is dominated by tight shales, siltstones and calcareous clastic rocks. As part of Geoscience Australia’s Exploring for the Future program, this study aimed to improve the Proterozoic shale gas reservoir characterisation by derivation of porosity, permeability and gas content from laboratory testing and machine learning approaches to wireline log interpretation. The Proterozoic Lawn Hill Formation is divided into four chemostratigraphic packages. The middle two packages are further divided into seven internal units according to principal component analysis and self-organising map clustering on well logs and inorganic geochemical properties. Artificial neural networks were then applied to interpret the mineral compositions, porosity and permeability from well logs, density and neutron-density crossplot interpretations. Gas content was estimated from the interpreted porosity, gas saturation, total organic carbon and clay contents. Petrophysical interpretation results are summarised for all chemostratigraphic packages and units. P2 (1126.3–1430.1 m) has the highest potential among the four chemostratigraphic packages. P2U1 (1126.3–1271 m) and P2U3 (1335.5–1430.1 m) units have the most favourable petrophysical properties for organic-rich shales, with average total gas contents of 1.213 and 1.315 cm3/g, geometric mean permeability of 6.6 and 25.31 µD and net shale thickness of 53.5 and 83.3 m, respectively. P3U4 (687.9–697.9 m) has high gas content and permeability, with a net shale thickness of 35.9 m. The tight non-organic-rich siltstone and shale reservoirs in package P1 (below 1430.1 m) have an average gas saturation of 17.4% and a geometric mean permeability of 0.48 µD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call