Abstract

This paper reports experimental results that demonstrate petrophysical and capillary characteristics of compacted salt. The measured data include porosity, gas permeability, pore size distribution, specific surface area, and gas-brine breakthrough and capillary pressure. Salt samples employed in the experiments were prepared by compacting sodium chloride granulates at high stresses for several hours. They represent an intermediate consolidation stage of crushed salt under in-situ conditions. The porosity and permeability of compacted salt showed similar trends to those expected in backfilled regions of waste repositories excavated in salt rock. The correlation between the measured porosity and permeability seems to be independent of the compaction parameters for the range examined in this study. The correlation also shows a different behaviour from that of rock salt. The data of all petrophysical properties show that the pore structure of compacted salt can be better characterized by fracture permeability models rather than capillary bundle ones. Simple creep tests, conducted on the fully-brine-saturated compacted salt samples, yielded similar strain rates to those obtained by a steady-state mechanical model developed from the tests on fully brine-saturated granular salt. A modified procedure is proposed for the evaluation of restored-state capillary pressure data influenced by the material creep. The characteristic parameters for the capillary behaviour of compacted salt are determined by matching the Brooks-Corey and van Genuchten models with the measured data. The Leverett functions determined with different methods agree well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.