Abstract

Ore mineral and host lithologies have been sampled at 14 sites (89 oriented samples) in the Naica District, northern Mexico. The following properties were measured to characterise samples: saturation magnetization, high-temperature magnetic susceptibility, remanence intensity, Koenigsberger ratio, Curie temperature and hysteresis parameters. Rock magnetic properties seem to be controlled by variations in pyrrhotite, (titano)magnetite, (titano)hematite and (titano)maghemite content, and hydrothermal alteration. Post-mineralization hydrothermal alteration seems to be the major event that affected the minerals and magnetic properties. Continuous susceptibility measurements with temperature in most cases yield Curie points close to that of almost pure magnetite. Hysteresis curves and associated IRM (isothermal remanent magnetization) acquisition plots, however, in some cases points to the higher coercivity minerals. Hematite or a mixture of hematite-titanomagnetite-titanomaghemite are probably present in the Naica samples although their contribution in remanent magnetization is minor. Judging from the ratios of hysteresis parameters, it seems that all samples fall into the pseudo-single domain (PSD) grain size region. The Koenigsberger ratio (Q) was used as a measure of the relative contribution of remanent and induced magnetization into the magnetic anomalies. Q ranges from 0.05 to 34 and, generally, it is higher than 1, indicating the predominance of remanence over induced magnetism. The location and geometry of the magnetic source is shown as a single long subhorizontal body slightly inclined (∼20°) to the SE. This modelled body suggests an andine-type nature and emplacement of granitic magmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.