Abstract

The SW Antalya Complex is an assemblage of Mesozoic carbonate platform, margin and ophiolitic rocks which record the formation and tectonic emplacement of a small Mesozoic ocean basin. The late Cretaceous ophiolitic rocks are located at two localities, namely the relatively intact Tekirova ophiolite to the east of Kemer zone and the dismembered Godene ophiolite to the west of Kemer zone. The Tekirova (Antalya) ophiolite comprises harzburgitic tectonites, ultramafic to mafic cumulates, isotropic gabbros and sheeted dikes. Numerous isolated dikes, ranging in thickness from 5 cm to 10 m, intruded the crustal rocks at different structural levels. The isotropic gabbros are represented by gabbro, diorite and quartz diorite rocks with granular to ophitic–subophitic textures. The isolated dikes are characterized by dolerite, diabase and microdiorite with ophitic, intersertal and microgranular textures. These rocks exhibit tholeiitic to alkaline compositions. New geochemical data presented in this paper from the isolated dikes and isotropic gabbros suggest that there are three main types of parental basic magmas that form the oceanic crustal rocks of the Tekirova (Antalya) ophiolite. These are (1) IAT series which can be referred to the Group I isolated dikes and isotropic gabbros; (2) low-Ti boninitic series characterized by the Group II isolated dike and isotropic gabbros; and (3) OIB-type including the Group III isotropic gabbros. The geochemical evidence suggests that the crustal rocks of the Tekirova (Antalya) ophiolite were generated from a progressive source depletion from island arc tholeiites (IAT) to boninites. Therefore, a fore-arc tectonic setting seems likely for the generation of the crustal rocks from the Tekirova (Antalya) ophiolite in the southern branch of Neotethys during the Late Cretaceous. The OIB-type alkaline isotropic gabbros are thought to have resulted from either (1) a late-stage magmatic activity fed by melts that originated within an asthenospheric window due to slab break-off or (2) subduction of a ridge system which generated OIB source across the asthenospheric window that has been no influence of fluids from the subducted slab into the overlying mantle wedge, shortly before the emplacement of the Tekirova (Antalya) ophiolite onto the Tauride platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.